Myskunkworks

Store Search
Store Categories

Bookmark this page
TRIPLE FREQUENCY GENERATOR IC for HHO HYDROGEN CELL
 

TRIPLE FREQUENCY GENERATOR IC for HHO HYDROGEN CELL

Price: $24.95
This item is in stock
Quantity:
Detailed Description
Specifications

Introductory 50% Off Sale.
TRIPLE FREQUENCY GENERATOR IC for HHO HYDROGEN CELL.
Now Improved with Gating Input


Tunable Microchip generator IC with 3 different frequencies. Made specifically for use in Bob Boyce's Hydrogen Cell. This IC REPLACES the three 555 timers (and a bunch of resistors) to make it much easier to build his Hydrogen Cell device. Outputs Three SINGLE Frequencies. This is different from our Sweep frequency IC.

  • F1: 42.8 kHz (tunable from 11kHz to 111kHz)
  • F2: 21.4 kHz (tunable from 5.5kHz to 55kHz)
  • F3: 10.7 kHz (tunable from 2.75kHz to 27.5kHz)

    Output are square waves which can be amplified to drive a toroidal transformer. Frequency accuracy is about +/- 2%. Use it to drive three IRL540 mosfets (like Bob does), or a darlington driver like ULN2803 or ULN2074 to amplify the signals. Then just mix the amplified signals in the toroid coil to experiment with Bob Boyce's hydrogen fuel cell.

    Bob uses these three frequencies to drive a hydrogen cell with steel plates that are 1/8" apart. So these three frequencies would probably not work with a different plate spacing, or differently designed hydrogen cells. Which is why we made this triple frequency generator TUNABLE.

    It can be tuned with a 50k potentiometer from 11kHz to 111kHz for the highest frequency. The other two frequencies are automatically adjusted to stay in the same ratio. For example when you tune the highest frequency (F1) to 42.8kHz, the second freq. will be 21.4kHz, and the third one 10.7kHz (that's Bob's setup). Or when F1=111kHz, the other two frequencies are 55.5 and 27.75kHz. The frequencies are always in the 4:2:1 ratio.

    The optional gating input accepts 5-volt square wave, and switches the three frequencies ON and OFF, producing pulse trains just like the output of Stan Meyer's super electrolyzer. It can also be grounded to turn off output.

    If you're using a different cell design, you can tune the frequencies to see if you hit the resonance, at which the cell greatly increases output, like Bob's does. We make this available to people who want to experiment with Bob's super-efficient electrolysis. However we DO NOT guarantee any specific results, only that this IC produces the frequencies mentioned.

    Building details for Bob's super hydrogen cell are in this pdf file Here.


     
    And here are some of Bob's old posts regarding his super-efficient electrolysis discovery:
     
    ""The resonance effect happened when the alternator on one of these marine
    engines failed (rectifier shorted),and superimposed an AC waveform onto the DC
    power bus. The effect was limited to a particular RPM range, and was as if
    someone kicked in an afterburner, it made such a difference in engine
    horsepower."
    "From the Trenches -- One Man's Experience with Free Energy
    Bob Boyce tells about how he built a carburetor using hydrogen and oxygen split
    using proper frequencies
    From: "Bob Boyce" Sent: October 07, 2002 8:38 PM
    . into hydrogen research where I was building small electrolyzer type units that
    used distilled water mixed with an electrolyte and I would resonate the plates
    for optimal conversion efficiency. I discovered that with the right frequencies,
    I was able to generate monoatomic hydrogen and oxygen, which when recombined,
    produces about 4 times the energy output of normal diatomic hydrogen and oxygen
    molecules since the process of combustion does not have to break apart the
    molecules first before recombining into water vapor.
     
    Diatomic hydrogen requires about 4% to air to produce the same power as
    gasoline, while monoatomic requires slightly less than 1% to air for the same
    power. The only drawback was storage at pressure causes the monoatoms to start
    joining into diatomic pairs, and the mixture weakens, so it must be produced
    on-demand and consumed right away.
    I used modified LP carbs on the boat engines to deal with using vapor fuel. I
    even converted an old chrysler with a slant six engine to run on the hydrogen
    setup and we tested it in the shop.
     
    When I discovered the resonance reaction, I was running a pair of small
    water-jet powered race boats off of hydroxy on demand systems. Both boats had
    identical systems, which were comprised of 2 pairs of 6-cell stacks. Both used a
    pair of dedicated propane carbs with 1" vapor fuel lines coming from the
    bubblers.
    Each cell in the stack was 4 parallel cells containing 3 cathode plates and 2
    anode plates, with 1/8" (3 mm) spacing. The cell stacks were 18" square, so
    plate surface area for these was massive. It was essentially a brute force
    system, although I was taking advantage of the series cell and the efficiency
    boost of the catalytic electrolyte. I had discovered this design in my attempts
    to improve efficiency of the basic electrolyser, and it turned out to be much
    more efficient than the electrolysers of the day in all of the literature I
    could find in the libraries.
     
    I had modified the battery system to use marine deep cycle batteries, with a
    heavy solenoid to engage and disengage power to each unit. Battery run time needed was
    only in the minutes, so I just changed batteries before each heat, and kept
    batteries on charge during the event.
    The resonance effect happened when the alternator on one of these marine engines
    failed (rectifier shorted),and superimposed an AC waveform onto the DC power
    bus. The effect was limited to a particular RPM range, and was as if someone
    kicked in an afterburner, it made such a difference in engine horsepower
    . After
    identifying the cause of this unusual burst of horsepower, I set out to find
    ways to intentionally create this reaction. The rest is history as they say.
     
    The auto engine I ran was using a 60 series cell unit operating from a resonance
    generator and driver. At resonance, it took about 55-60 watts to generate enough
    hydroxy gas to just idle the engine, and about 160 watts to run the engine where
    the speedometer read 60 MPH in gear. This was with the car rear end up on jack
    stands, so no vehicle load at all on the engine. The engine was a chrysler 170
    CID slant six (inline 6 cylinder) lean burn system with a carb and a distributor
    type ignition. I used a propane adapter plate on that engine to adapt it to
    vapor fuel.
     
    In answer to the question on gas volume, yes, the volume increased dramatically
    during resonance, while current draw went way down.
    I think the limiting factor
    on those early 60 cell designs was the amount of gas that could evolve out of
    solution and come out of the chamber given the plate area being blocked by the
    bubbles. It was as if the water was boiling during resonance, and the bubbles
    came out of solution, not just at the plate surfaces.
    Bob // 2H+O+Spark=BOOM!"


  •  

     


    E-mail a friend about this item.

    Return to Catalog